
Interface Design First Principles
(Source information: About.com - Bruce Tognazzini)

The following principles are fundamental to the design and implementation of effective interfaces, whether
for traditional GUI environments or the web. Of late, many web applications have reflected a lack of
understanding of many of these principles of design, to their great detriment. Because an application or
service appears on the web, the principles do not change. If anything, applying these principles become
even more important.

Effective interfaces are visually apparent and forgiving, instilling in their users a sense of control. Users
quickly see the breadth of their options, grasp how to achieve their goals, and do their work.

Effective interfaces do not concern the user with the inner workings of the system. Work is carefully and
continuously saved, with full option for the user to undo any activity at any time.

Effective applications and services perform a maximum of work, while requiring a minimum of information
from users.

Anticipation Applications should attempt to anticipate the user’s wants and needs. Do not expect users
to search for or gather information or evoke necessary tools. Bring to the user all the
information and tools needed for each step of the process.

Autonomy • The computer, the interface, and the task environment all "belong" to the user, but user-
autonomy doesn’t mean we abandon rules.

Give users some breathing room. Users learn quickly and gain a fast sense of mastery
when they are placed "in charge." Paradoxically, however, people do not feel free in the
absence of all boundaries (Yallum, 1980). A little child will cry equally when held too tight
or left to wander in a large and empty warehouse. Adults, too, feel most comfortable in an
environment that is neither confining nor infinite, an environment explorable, but not
hazardous.

• Use status mechanisms to keep users aware and informed.

No autonomy can exist in the absence of control, and control cannot be exerted in the
absence of sufficient information. Status mechanisms are vital to supplying the information
necessary for workers to respond appropriately to changing conditions. As a simple
example, workers, failing status information, will tend to maintain heightened pressure on
themselves during slow periods, until the moment the work actually runs out. This will
stress and fatigue them unnecessarily, so that when the next rush occurs, they may be
lacking the physical and mental reserves to handle it.

• Keep status information up to date and within easy view

Users should not have to seek out status information. Rather, they should be able to
glance at their work environment and be able to gather at least a first approximation of
state and workload. Status information can be quite subtle: the inbox icon could be
switched to show an empty, somewhat full, or stuffed state. This, however, should not be
overdone. The Macintosh, for years, showed an icon of a trashcan of imminent danger of
explosion if a single document was placed therein. Users quickly formed the habit of
emptying the trashcan as soon as the first document hit. This not only turned a single-step
operation into a two-step operation (drag to the trash, then empty the trash), it negated
the entire power of the trashcan, namely, undo.

As another positive example, a search field icon can change color and appearance to
indicate that the search is in progress or has been completed with too many matches, too
few matches, or just enough. (Like any element of the interface, just color is not enough;
10% of males show some indication of color blindness. Even a higher percentage may have
temporary alterations in perception of blue under varying conditions.)

Color
Blindness

• Any time you use color to convey information in the interface, you should also use clear,
secondary cues to convey the information to those who won't be experiencing any color

coding today.

Most people have color displays nowadays, by they are not universal. In addition,
approximately 10% of human males, along with a rare sprinkling of females, have some
form of color blindness.

The cones in the eye are the source of color vision. We have cones separately sensitive to
red, green, and blue. If the red ones are not functioning that is called protanopia. If the
green are not functioning, that is called deuteranopia. Absence of blue, extremely rare, is
called tritanopia.

Protonopia and deuteranopia are the most popular forms of color blindness, collectively
called red/green blindness. (There are, in fact, significant differences in their effects, but
those differences have no real effect on design.) While tritanopia is far more rare, it
nonetheless rules out dependence on yellow-blue differentiation without secondary cues.

Secondary cues can consist of anything from the subtlety of gray scale differentiation to
having a different graphic or different text label associated with each color presented.

Consistency The following principles, taken together, offer the designer tremendous latitude in the
evolution of a product without seriously disrupting those areas of consistency most
important to the user.

• Levels of consistency: The importance of maintaining strict consistency varies. The
following list is ordered from those interface elements demanding the most faithful
consistency effort to those demanding the least. Paradoxically, many people assume that
the order of items one through five should be exactly the reverse, leading to applications
that look alike, but act completely different in unpredictable ways:

1.Interpretation of user behavior, e. g., shortcut keys maintain their meanings.

2.Invisible structures.

3.Small visible structures.

4.The overall "look" of a single application or service--splash screens, design elements.

5.A suite of products.

6.In-house consistency.

7.Platform-consistency.

"Invisible structures" refers to such invisible objects as Microsoft Word's clever little right
border that has all kinds of magical properties, if you ever discover it is there. It may or
may not appear in your version of Word. And if it doesn't, you'll never know for sure that it
isn't really there, on account of it's invisible. Which is exactly what is wrong with invisible
objects and why consistency is so important. Other objects are, strictly speaking, visible,
but do not appear to be constrols, so users, left to their own devices, might never discover
their manipulability. The secret, if you absolutely insist on one, should be crisp and clean,
for example, "you can click and drag the edges of current Macintosh windows to size
them," not, "You can click and drag various things sometimes, but not other things other
times."

"Small visible structures" refers to icons, size boxes, scroll arrows, etc. The appearance of
such objects needs to be strictly controlled if people are not to spend half their time trying
to figure out how to scroll or how to print. Location is only just slightly less important than
appearance. Where it makes sense to standardize location, do so.

• Inconsistency: It is just important to be visually inconsistent when things must act
differently as it is to be visually consistent when things act the same. Avoid uniformity.
Make objects consistent with their behavior. Make objects that act differently look
different.

• The most important consistency is consistency with user expectations.

The only way to ascertain user expectations is to do user testing. No amount of study and
debate will substitute.

Defaults • Defaults should be easy to "blow away:" Fields containing defaults should come up
selected, so users can replace the default contents with new material quickly and easily.

• Defaults should be "intelligent" and responsive.

• Do not use the word "default" in an application or service. Replace with "Standard," "Use
Customary Settings," "Restore Initial Settings," or some other more specific terms
describing what will actually happen.

Efficiency
of the User

• Look at the user's productivity, not the computer's.

People cost a lot more money than machines, and while it might appear that increasing
machine productivity must result in increasing human productivity, the opposite is often
true. In judging the efficiency of a system, look beyond just the efficiency of the machine.

For example, which of the following takes less time? Heating water in a microwave for one
minute and ten seconds or heating it for one minute and eleven seconds?

From the standpoint of the microwave, one minute and ten seconds is the obviously
correct answer. From the standpoint of the user of the microwave, one minute and eleven
seconds is faster. Why? Because in the first case, the user must press the one key twice,
then visually locate the zero key, move the finger into place over it, and press it once. In
the second case, the user just presses the same key–the one key–three times. It typically
takes more than one second to acquire the zero key. Hence, the water is heated faster
when it is "cooked" longer.

Other factors beyond speed make the 111 solution more efficient. Seeking out a different
key not only takes time, it requires a fairly high level of cognitive processing. While the
processing is underway, the main task the user was involved with–cooking their meal–
must be set aside. The longer it is set aside, the longer it will take to reacquire it.

Additionally, the user who adopts the expedient of using repeating digits for microwave
cooking faces fewer decisions. They soon abandon figuring out, for example, whether
bacon should be cooked for two minutes and ten seconds or two minutes and twenty-three
seconds. They do a fast estimate and, given the variability of water content and bacon
thickness, end up with as likely a successful result with a lot less dickering up front, again
increasing human efficiency.

• Keep the user occupied

Since, typically, the highest expense in a business is labor cost. Any time the user must
wait for the system to respond before they can proceed, money is being lost.

• To maximize the efficiency of a business or other organization you must maximize
everyone’s efficiency, not just the efficiency of a single group.

Large organizations tend to be compartmentalized, with each group looking out for its own
interests, sometimes to the detriment of the organization as a whole. Information resource
departments often fall into the trap of creating or adopting systems that result in increased
efficiency and lowered costs for the information resources department, but only at the cost
of lowered productivity for the company as a whole.

For example, one large California corporation used floppy disks as the medium for
collecting benefit enrollment information. At the beginning of open enrollment, each
employee would receive a disk with the enrollment applications on which he or she would
insert into their computer and run. After asking for the employee’s name, address, phone
number, department name, etc., the employee would be permitted to step through all the
various benefits, ultimately returning the disk which now contained all their answers and
decisions. The IR department then sucked the data off each disk and entered it into their
system, all automatically. The IR department saved a great deal of money over the old
system, where they had to key in the employee’s decisions from a paper form.

What was the problem? Instead of the IR department bearing the burden of keying in the
employees’ decisions, each and every employee now bore the burden of typing in his or
her name, address, phone number, department name, etc. The system was just as
inefficient as before, but now the cost was borne by all departments, rather than having it
concentrated in the IR department’s budget.

• The great efficiency breakthroughs in software are to be found in the fundamental
architecture of the system, not in the surface design of the interface.

This simple truth is why it is so important for everyone involved in a software project to
appreciate the importance of making user productivity goal one and to understand the vital
difference between building an efficient system and empowering an efficient user. This
truth is also key to the need for close and constant cooperation, communication, and
conspiracy between engineers and human interface designers if this goal is to be achieved.

• Write help messages tightly and make them responsive to the problem: good writing
pays off big in comprehension and efficiency.

• Menu and button labels should have the key word(s) first.

Example from a fictitious word processor:

Wrong:

� Insert page break

� Add Footnote

� Update Table of Contents

Right:

Insert:

� Page break

� Footnote

� Table of contents

Here, the first example, with its leading words, is actually more informative and more
accurate: one does not "insert" a footnote if it is to be placed after all the other footnotes.
And one does not insert a table of contents if there is already a table of contents there.
Instead, one updates it. Still, the second example will prove much more efficient in time-
trials. Why? Because the extra information the first example offers does not outweigh the
advantage of being able to scan only the first word in each menu item to find the specific
menu item you are after.

Explorable
Interfaces

• Give users well-marked roads and landmarks, then let them shift into four-wheel drive.

Mimic the safety, smoothness, and consistency of the natural landscape. Don’t trap users
into a single path through a service, but do offer them a line of least resistance. This lets
the new user and the user who just wants to get the job done in the quickest way possible
and "no-brainer" way through, while still enabling those who want to explore and play
what-if a means to wander farther afield.

• Sometimes, however, you have to provide deep ruts.

The closer you get to the naive end of the experience curve, the more you have to rein in
your users. A single-use application for accomplishing an unknown task requires a far more
directive interface than a habitual-use interface for experts.

• Offer users stable perceptual cues for a sense of "home."

Stable visual elements not only enable people to navigate fast, they act as dependable
landmarks, giving people a sense of "home."

• Make Actions reversible

People explore in ways beyond navigation. Sometimes they want to find out what would
happen if they carried out some potentially dangerous action. Sometimes they don’t want
to find out, but they do anyway by accident.

By making actions reversible, users can both explore and can "get sloppy" with their work.

• Always allow "Undo."

The unavoidable result of not supporting undo is that you must then support a bunch of

dialogs that say the equivalent of, "Are you really, really sure?" Needless to say, this slows
people down.

In the absence of such dialogs, people slow down even further. A study a few years back
showed that people in a hazardous environment make no more mistakes than people in a
supportive and more visually obvious environment, but they worked a lot slower and a lot
more carefully to avoid making errors.

• Always allow a way out.

Users should never feel trapped. They should have a clear path out.

• However, make it easier to stay in.

Early software tended to make it difficult to leave. With the advent of the web, we've seen
the advent of software that makes it difficult to stay. Web browsers still festoon their
windows with objects and options that have nothing to do with our applications and
services running within. Our task can become akin to designing a word process which, oh,
by the way, will be using Photoshop's menu bar. Having 49 options on the screen that lead
directly to destruction of the user's work, along with one or two that just might help is not
an explorable interface, it is the interface from hell. If you are working with complex
transactions using a standard web browser, turn off the menu bar and all of the other
irrelevant options, then supply our own landmarks and options.

Fitts's Law • The time to acquire a target is a function of the distance to and size of the target.

While at first glance, this law might seem patently obvious, it is one of the most ignored
principles in design. Fitts's law dictates the Macintosh pull-down menu acquisition should
be approximately five times faster than Windows menu acquisition, and this is proven out.
Fitt's law dictates that the windows task bar will constantly and unnecessarily get in
people's way, and this is proven out. Fitt's law indicates that the most quickly accessed
targets on any computer display are the four corners of the screen, because of their
pinning action, and yet they seem to be avoided at all costs by designers.

Use large objects for important functions (Big buttons are faster).

Use the pinning actions of the sides, bottom, top, and corners of your display: A single-row
toolbar with tool icons that "bleed" into the edges of the display will be many times faster
than a double row of icons with a carefully-applied one-pixel non-clickable edge along the
side of the display.

Human
Interface
Objects

Human-interface objects are not necessarily the same as objects found in object-oriented
systems. Our objects include folders, documents, and the trashcan. They appear within the
user's environment and may or may not map directly to an object-oriented object. In fact,
many early gui's were built entirely in non-object-oriented environments.

• Human-interface objects can be seen, heard, touched, or otherwise perceived.

• Human interface objects that can be seen are quite familiar in graphic user interfaces.
Objects that play to another sense such as hearing or touch are less familiar. Good work
has been done in developing auditory icons (Gaver).

• Human-interface objects have a standard way of interacting.

• Human-interface objects have standard resulting behaviors.

• Human-interface objects should be understandable, self-consistent, and stable.

Latency
Reduction

• Wherever possible, use multi-threading to push latency into the background.

Latency can often be hidden from users through multi-tasking techniques, letting them
continue with their work while transmission and computation take place in the background.

• Reduce the user’s experience of latency.

 Acknowledge all button clicks by visual or aural feedback within 50 milliseconds.

 Display an hourglass for any action that will take from 1/2 to 2 seconds.

 Animate the hourglass so they know the system hasn't died.

 Display a message indicating the potential length of the wait for any action that
will take longer than 2 seconds.

 Communicate the actual length through an animated progress indicator.

 Offer engaging text messages to users informed and entertained while they are
waiting for long processes, such as server saves, to be completed.

 Make the client system beep and give a large visual indication upon return from
lengthy (>10 seconds) processes, so that users know when to return to using
the system.

 Trap multiple clicks of the same button or object. Because the Internet is slow,
people tend to press the same button repeatedly, causing things to be even
slower.

• Make it faster

Eliminate any element of the application that is not helping. Be ruthless.

Learnability Ideally, products would have no learning curve: users would walk up to them for the very
first time and achieve instant mastery. In practice, all applications and services, no matter
how simple, will display a learning curve.

• Limit the Trade-Offs

Usability and learnability are not mutually exclusive. First, decide which is the most
important; then attack both with vigor. Ease of learning automatically coming at the
expense of ease of use is a myth.

Metaphors,
Use of

• Choose metaphors well, metaphors that will enable users to instantly grasp the finest
details of the conceptual model.

Good metaphors are stories, creating visible pictures in the mind.

• Bring metaphors alive by appealing to people’s perceptions–sight, sound, touch, and
kinesthesia–as well as triggering their memories.

Metaphors usually evoke the familiar, but often add a new twist. For example, Windows 95
has an object called a briefcase. Like a real-world briefcase, its purpose is to help make
electronic documents more portable. It does so, however, not by acting as a transport
mechanism, but as a synchronizer: Documents in the desktop briefcase and the briefcase
held on portable media are updated automatically when the portable media is inserted in
the machine.

Protect
Users'
Work

• Ensure that users never lose their work as a result of error on their part, the vagaries of
Internet transmission, or any other reason other than the completely unavoidable, such as
sudden loss of power to the client computer.

(Even here, it has become completely inexcusable that today's computers and operating
systems do not support and encourage continuous-save. That, coupled with a small
amount of power-protected memory could eliminate the embarrassment of $5000
machines offering the reliability of 10-cent toys.)

Readability • Text that must be read should have high contrast. Favor black text on white or pale
yellow backgrounds. Avoid gray backgrounds.

• Use font sizes that are large enough to be readable on standard monitors. Favor
particularly large characters for the actual data you intend to display, as opposed to labels
and instructions. For example, the label, "Last Name," can afford to be somewhat small.
Habitual users will learn that that two-word gray blob says "Last Name." Even new users,
based on the context of the form on which it appears, will have a pretty good guess that it

says "Last Name." The actual last name entered/displayed, however, must be clearly
readable. This becomes even more important for numbers. Human languages are highly
redundant, enabling people to "heal" garbled messages. Numbers, however, unless they
follow a very strict protocol, have no redundancy, so people need the ability to examine
and comprehend every single character.

• Pay particular attention to the needs of older people. Presbyopia, the condition of
hardened, less flexible lenses, coupled with reduced light transmission into the eye, affects
most people over age 45. Do not trust your young eyes to make size and contrast
decisions.

Track State • Because many of our browser-based products exist in a stateless environment, we have
the responsibility to track state as needed.

We may need to know:

o Whether this is the first time the user has been in the system

o Where the user is

o Where the user is going

o Where the user has been during this session

o Where the user was when they left off in the last session

and myriad other details.

In addition to simply knowing where they’ve been, we can also make good use of what
they’ve done.

• State information should be held in a cookie on the client machine during a session with
a transaction service, then stored on the server when they log off.

Users should be able to log off at work, go home, and take up exactly where they left off.

A private service for doctors, Physicians On Line, does an excellent job with this. Doctors
can be 95% of the way through a complex transaction, log off, log in again six weeks later
from another part of the world, and the service will ask them if they want to be taken right
back to where they were.

Visible
Navigation

• Avoid invisible navigation.

Most users cannot and will not build elaborate mental maps and will become lost or tired if
expected to do so.

The World Wide Web, for all its pretty screens and fancy buttons, is, in effect, an invisible
navigation space. True, you can always see the specific page you are on, but you cannot
see anything of the vast space between pages. Once users reach our applications, we must
take care to reduce navigation to a minimum and make that navigation that is left clear
and natural. Present the illusion that users are always in the same place, with the work
brought to them. This not only eliminates the need for maps and other navigational aids, it
offers users a greater sense of mastery and autonomy.

As with the inherent statelessness of the web (see Track State, above), our job is not to
accept blindly what the architects have given us, but to add the layers of capability and
protection that users want and need. That the web's navigation is inherently invisible is a
challenge, not an inevitability.

